Electrical Impedance Tomography Image Reconstruction Using Iterative Lavrentiev and L-Curve-Based Regularization Algorithm

نویسندگان

  • Wenqin WANG
  • Jingye CAI
  • Lian YANG
چکیده

Electrical impedance tomography (EIT) is a technique for determining the electrical conductivity and permittivity distribution inside a medium from measurements made on its surface. The impedance distribution reconstruction in EIT is a nonlinear inverse problem that requires the use of a regularization method. The generalized Tikhonov regularization methods are often used in solving inverse problems. However, for EIT image reconstruction, the generalized Tikhonov regularization methods may lose the boundary information due to its smoothing operation. In this paper, we propose an iterative Lavrentiev regularization and L-curve-based algorithm to reconstruct EIT images. The regularization parameter should be carefully chosen, but it is often heuristically selected in the conventional regularization-based reconstruction algorithms. So, an L-curve-based optimization algorithm is used for selecting the Lavrentiev regularization parameter. Numerical analysis and simulation results are performed to illustrate EIT image reconstruction. It is shown that choosing the appropriate regularization parameter plays an important role in reconstructing EIT images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Four-Dimensional Regularization for Electrical Impedance Tomography Imaging

This paper proposes 4-D EIT image reconstruction for functional EIT measurements. The approach directly accounts for 3-D interslice spatial correlations and temporal correlations between images in successive data frames. Image reconstruction is posed in terms of an augmented image x̃ and measurement vector ỹ, which concatenate the values from the d previous and future frames. Image reconstructio...

متن کامل

Experimental / clinical evaluation of EIT image reconstruction with l 1 data and image norms

Electrical impedance tomography (EIT) image reconstruction is ill-posed, and the spatial resolution of reconstructed images is low due to the diffuse propagation of current and limited number of independent measurements. Generally, image reconstruction is formulated using a regularized scheme in which `2 norms are preferred for both the data misfit and image prior terms due to computational con...

متن کامل

Joint L and Total Variation Regularization for Magnetic Detection Electrical Impedance Tomography

─ Magnetic detection electrical impedance tomography (MDEIT) is an imaging modality that aims to compute the cross-sectional distribution of the conductivity of a volume from the magnetic flux density surrounding the object. Owing to the Biot-Savart law, the MDEIT inverse problem is inherently ill-conditioned making image reconstruction highly susceptible to the effects of noise and numerical e...

متن کامل

Topology Optimization Applied to 2d and 3d Electrical Impedance Tomography

Electrical Impedance Tomography (EIT) is an imaging technique which tries to find conductivity distribution inside a section of body. The EIT deals with an inverse problem in which given the measured voltages on electrodes it estimates the conductivity distribution by using an image reconstruction algorithm. EIT can be used in several applications and, recently, it has been applied for obtainin...

متن کامل

A neural network image reconstruction technique for electrical impedance tomography

Reconstruction of images in electrical impedance tomography requires the solution of a nonlinear inverse problem on noisy data. This problem is typically ill-conditioned and requires either simplifying assumptions or regularization based on a priori knowledge. The authors present a reconstruction algorithm using neural network techniques which calculates a linear approximation of the inverse pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010